How do you solve the system of equations: #8x + 5y = - 17;- 3x - 8y = - 12#?

2 Answers
Mar 29, 2017

x=-4 and y=3

Explanation:

When you multiply the first equation by 3 and the second equation by 8, you get:

#24x+15y=-51# and
#-24x-64y=-96#.

Combine these two. Get:
#-49y=-147#
Then you will get #y=3#.

Since #8x+5y=-17#, this equation becomes
#8x+5*3=-17# or #8x=-32#.

#x=-4# is the answer.

Mar 29, 2017

#x=-4# and #y=3#

Explanation:

#8x+5y=-17# #color(white)(/////)#⟶ ①
#-3x-8y=-12# #color(white)(....)#⟶ ②

From ②,

#-3x-8y=-12#
#color(white)(i.)3x+8y=12#
#color(white)(xxxxx)3x=12-8y#
#color(white)(xxxxx.)x=(12-8y)/3# ⟶ ③

Substitute ③ into ①,

#color(white)(xxxxxx..x)8x+5y=-17#
#8((cancel(12_4)-8y)/3)+5y=-17#
#color(white)(x..)8(4-(8y)/3)+5y=-17#
#color(white)(xxxx)32-(64y)/3+5y=-17#
#color(white)(xxxxxx/..)(64y)/3-5y=32+17#
#color(white)(xxxxxxxx.x)(cancel(49_1)y)/3=cancel(49_1)#
#color(white)(xxxxxxxxxxxxx)y=3#

When #y=3# from ①,

#color(white)(//)8x+5y=-17#
#8x+5(3)=-17#
#color(white)(/)8x+15=-17#
#color(white)(xxxx.)8x=-32#
#color(white)(xxxxx.)x=-4#

Hence, #x=-4# and #y=3#.