How do you solve the system of equations: #x+ 2y = 8; - y = - 2x + 6#?

1 Answer
Dec 17, 2016

The lines from each equation intersect at point #P# such that:

#P->(x,y)=(4,2)#

Explanation:

Given:
#-y=-2x+6.....................Equation(1)#
#x+2y=8............................Equation(2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "x)#

Consider equation(1)
Multiply both sides by (-1) giving

#+y=+2x-6........................Eqiation(1_a)#

Substitute for #y# in #Equation(2)# using #Equation(1_a)#

#x+2y=8" "->" "x+2(2x-6)=8#

#x+4x-12=8#

#5x-12=8#

Add 12 to both sides

#5x=20#

Divide both sides by 5

#color(blue)(x=4)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of "y)#

Substitute for #x# in #Equation(1)#

#-y=-2x+6" "->" "-y=-2(4)+6#

Multiply both sides by (-1)

#y=8-6#

#color(blue)(y=2)#