How do you solve the system of equations #x- y = 1# and #6x + 5y = - 49#?

1 Answer
Jul 11, 2017

#x=-4# and #y=-5#

Explanation:

#x-y=1#
#6x+5y=-49#

From the first equation, we derive a value for #x#.

#x-y=1#

Add #y# to each side.

#x-y+y=1+y#

#x=1+y#

In the second equation, substitute #x# with #color(blue)((1+y))#.

#6x+5y=-49#

#6color(blue)((1+y))+5y=-49#

Open the brackets and simplify.

#6+6y+5y=-49#

#6+11y=-49#

Subtract #6# from each side.

#6-6+11y=-49-6#

#11y=-55#

Divide both sides by #11#.

#(11y)/11=-55/11#

#(1cancel11y)/(1cancel11)=-(5cancel55)/(1cancel11)#

#y=-5#

In the first equation, substitute #y# with #color(red)(-5)#.

#x-y=1#

#x-(color(red)(-5))=1#

Open the brackets and simplify.

#x+5=1#

Subtract #5# from each side.

#x+5-5=1-5#

#x=-4#