I'm going to make a table of all our information:
#color(white)(.) Len g t h color(white)(.) | color(white)(.) Ang l e#
#w = 12 color(white)(....) | color(white)(.) W = 58#
#h = 14 color(white)(. ...) | color(white)(.) H = color(green)(?)#
#x = color(green)(?)color(white)(4) color(white)(....) | X = color(green)(?)#
We'll use #SinA/a = SinB/b#
#Sin (58)/12 = Sin H/14#
#0.071 = SinH/14#
#0.989 = SinH#
#H = Sin^-1(0.989)#
#H = 81.65#
Now our table is
#w = 12 color(white)(....) | color(white)(.) W = 58#
#h = 14 color(white)(. ...) | color(white)(.) H = 81.65#
#x = color(green)(?)color(white)(4) color(white)(....) | X = color(green)(?)#
Since we know a triangle has #180# total degree, we can solve for the last angle, #X#
#180 - 81.65 - 58 = 40.35#
#w = 12 color(white)(....) | color(white)(.) W = 58#
#h = 14 color(white)(. ...) | color(white)(.) H = 81.65#
#x = color(green)(?)color(white)(4) color(white)(....) | X = 40.35#
Now we can use #SinA/a = SinB/b# again
#Sin58/12 = Sin40.35/x#
#0.071 = Sin40.35/x#
#x = Sin(40.35)/0.071#
#x = 9.16#
Now our table is full
#w = 12 color(white)(....) | color(white)(.) W = 58#
#h = 14 color(white)(. ...) | color(white)(.) H = 81.65#
#x = 9.16 color(white)(.) | X = 40.35#