How do you solve this system of equations: #15x + 4y = 2145 and x + y = 165#?

2 Answers
Dec 21, 2017

#x=135# and #y=30#

Explanation:

From second equation, #y=165-x#

Hence,

#15x+4*(165-x)=2145#

#15x+660-4x=2145#

#11x=1485#, so #x=135#

Thus, #y=165-135=30#

Dec 21, 2017

#(x,y)to(135,30)#

Explanation:

#15x+4y=2145to(1)#

#x+y=165to(2)#

#"from equation "(2)" we can express y in terms of x"#

#rArry=165-xto(3)#

#color(blue)"substitute "y=165-x" in equation "(1)#

#15x+4(165-x)=2145#

#rArr15x+660-4x=2145#

#rArr11x+660=2145#

#"subtract 660 from both sides"#

#11xcancel(+660)cancel(-660)=2145-660#

#rArr11x=1485#

#"divide both sides by 11"#

#(cancel(11) x)/cancel(11)=1485/11#

#rArrx=135#

#color(blue)"substitute "x=135" in equation "(3)#

#y=165-135=30#

#rArr"point of intersection "=(135,30)#