How do you solve this system of equations: #15x + 4y = 2145 and x + y = 165#?
2 Answers
Dec 21, 2017
Explanation:
From second equation,
Hence,
Thus,
Dec 21, 2017
Explanation:
#15x+4y=2145to(1)#
#x+y=165to(2)#
#"from equation "(2)" we can express y in terms of x"#
#rArry=165-xto(3)#
#color(blue)"substitute "y=165-x" in equation "(1)#
#15x+4(165-x)=2145#
#rArr15x+660-4x=2145#
#rArr11x+660=2145#
#"subtract 660 from both sides"#
#11xcancel(+660)cancel(-660)=2145-660#
#rArr11x=1485#
#"divide both sides by 11"#
#(cancel(11) x)/cancel(11)=1485/11#
#rArrx=135#
#color(blue)"substitute "x=135" in equation "(3)#
#y=165-135=30#
#rArr"point of intersection "=(135,30)#