Step 1: Solve the first equation for #n#:
#2m - n = 13#
#-color(red)(2m) + 2m - n = -color(red)(2m) + 13#
#0 - n = -2m + 13#
#-n = -2m + 13#
#color(red)(-1) xx -n = color(red)(-1)(-2m + 13)#
#n = (color(red)(-1) xx -2m) + (color(red)(-1) xx 13)#
#n = 2m + (-13)#
#n = 2m - 13#
Step 2: Substitute #(2m - 13)# for #n# in the second equation and solve for #m#:
#3m - 8n = 13# becomes:
#3m - 8(2m - 13) = 13#
#3m - (8 xx 2m) + (8 xx 13) = 13#
#3m - 16m + 104 = 13#
#(3 - 16)m + 104 = 13#
#-13m + 104 = 13#
#-13m + 104 - color(red)(104) = 13 - color(red)(104)#
#-13m + 0 = --91#
#-13m = --91#
#(-13m)/color(red)(-13) = (-91)/color(red)(-13)#
#(color(red)(cancel(color(black)(-13)))m)/cancel(color(red)(-13)) = 7#
#m = 7#
Step 3: Substitute #7# for #m# in the solution to the first equation at the end of Step 1 and calculate #n#:
#n = 2m - 13# becomes:
#n = (2 xx 7) - 13#
#n = 14 - 13#
#n = 1#
The Solution Is: #m = 7# and #n = 1#