How do you solve using the completing the square method #2x^2-8x+3=0#?
1 Answer
May 6, 2016
Explanation:
Complete the square then use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
Multiply by
#0 = 2(2x^2-8x+3)#
#=4x^2-16x+6#
#=(2x)^2-2(2x)(4)+6#
#=(2x-4)^2-16+6#
#=(2x-4)^2-10#
#=(2x-4)^2-(sqrt(10))^2#
#=((2x-4)-sqrt(10))((2x-4)+sqrt(10))#
#=(2x-4-sqrt(10))(2x-4+sqrt(10))#
#=(2(x-2-sqrt(10)/2))(2(x-2+sqrt(10)/2))#
#=4(x-2-sqrt(10)/2)(x-2+sqrt(10)/2)#
Hence:
#x = 2+-sqrt(10)/2#