How do you solve using the completing the square method #2x^2-9x-17=0#?
1 Answer
Mar 27, 2016
Explanation:
In addition to completing the square, I will use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
To cut down on the need for fractions, multiply through by
#0 = 16x^2-72x-136#
#=(4x-9)^2-81-136#
#=(4x-9)^2-217#
#=(4x-9)^2-(sqrt(217))^2#
#=((4x-9)-sqrt(217))((4x-9)+sqrt(217))#
#=(4x-9-sqrt(217))(4x-9+sqrt(217))#
#=16(x-(9+sqrt(217))/4)(x-(9-sqrt(217))/4)#
So