# How do you solve #x^2 + 10x + 25 = 0# using the quadratic formula?

##### 2 Answers

May 22, 2017

#### Answer:

#### Explanation:

The quadratic formula states that:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

Where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In this case,

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#x = (-10+-sqrt(10^2-4(1)(25)))/(2(1))#

#x = (-10+-sqrt(100-100))/2#

#x = (-10+-0)/2#

Since adding or subtracting

#x = (-10)/2 = -5#

*Final Answer*

May 22, 2017

#### Answer:

Double root at x = - 5

#### Explanation:

Since D = 0, there is a double root at: