How do you solve #x^2 + 10x + 25 = 0# using the quadratic formula?
2 Answers
May 22, 2017
Explanation:
The quadratic formula states that:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
Where
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this case,
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#x = (-10+-sqrt(10^2-4(1)(25)))/(2(1))#
#x = (-10+-sqrt(100-100))/2#
#x = (-10+-0)/2#
Since adding or subtracting
#x = (-10)/2 = -5#
Final Answer
May 22, 2017
Double root at x = - 5
Explanation:
Since D = 0, there is a double root at: