How do you solve #x^ { 2} + 11x = 7#?

1 Answer
Apr 8, 2017

#x = -11/2+-sqrt(149)/2#

Explanation:

Method 1 - Completing the square

First subtract #7# from both sides to get:

#x^2+11x-7 = 0#

The difference of squares identity can be written:

#a^2-b^2 = (a-b)(a+b)#

We will use this with #a=(2x+11)# and #b=sqrt(149)#

To cut down on arithmetic involving fractions, let us multiply the whole equation by #4# before completing the square:

#0 = 4(x^2+11x-7)#

#color(white)(0) = 4x^2+44x-28#

#color(white)(0) = (2x)^2+2(2x)(11)+11^2-149#

#color(white)(0) = (2x+11)^2-(sqrt(149))^2#

#color(white)(0) = ((2x+11)-sqrt(149))((2x+11)+sqrt(149))#

#color(white)(0) = (2x+11-sqrt(149))(2x+11+sqrt(149))#

Hence:

#2x = -11+-sqrt(149)#

So:

#x = -11/2+-sqrt(149)/2#

#color(white)()#
Method 2 - Quadratic formula

Given:

#x^2+11x=7#

Subtract #7# from both sides to get:

#x^2+11x-7 = 0#

This is in the standard form:

#ax^2+bx+c = 0#

with #a=1#, #b=11# and #c=-7#.

We can find the roots using the quadratic formula:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (-11+-sqrt(11^2-4(1)(-7)))/(2*1)#

#color(white)(x) = (-11+-sqrt(121+28))/2#

#color(white)(x) = (-11+-sqrt(149))/2#

#color(white)(x) = -11/2+-sqrt(149)/2#