How do you solve #x^ { 2} + 11x = 7#?
1 Answer
Explanation:
Method 1 - Completing the square
First subtract
#x^2+11x-7 = 0#
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this with
To cut down on arithmetic involving fractions, let us multiply the whole equation by
#0 = 4(x^2+11x-7)#
#color(white)(0) = 4x^2+44x-28#
#color(white)(0) = (2x)^2+2(2x)(11)+11^2-149#
#color(white)(0) = (2x+11)^2-(sqrt(149))^2#
#color(white)(0) = ((2x+11)-sqrt(149))((2x+11)+sqrt(149))#
#color(white)(0) = (2x+11-sqrt(149))(2x+11+sqrt(149))#
Hence:
#2x = -11+-sqrt(149)#
So:
#x = -11/2+-sqrt(149)/2#
Method 2 - Quadratic formula
Given:
#x^2+11x=7#
Subtract
#x^2+11x-7 = 0#
This is in the standard form:
#ax^2+bx+c = 0#
with
We can find the roots using the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-11+-sqrt(11^2-4(1)(-7)))/(2*1)#
#color(white)(x) = (-11+-sqrt(121+28))/2#
#color(white)(x) = (-11+-sqrt(149))/2#
#color(white)(x) = -11/2+-sqrt(149)/2#