How do you solve #x^ (-2/3) = 9#?

2 Answers
May 11, 2018

raise both sides to the #-3/2# power.

Then you have:
#x^((-2/3)(-3/2))=9^(-3/2)#

#x=9^(-3/2)=(3^2)^(-3/2)#

#x= 3^-3#

#x=1/27#

May 11, 2018

A trick using logs.

#x=1/27#

Explanation:

Given: #x^(-2/3)=9#

Take logs of both sides:

#ln(x^(-2/3))#=ln(9)#

#-2/3ln(x)=ln(9)#

#ln(x)=-3/2ln(9)#

#x=ln^(-1)[-3/2ln(9)]#

#x= 0.037color(white)(.)bar(037)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#1000x=37.037bar(037)#
#ul(color(white)(1000)x=color(white)(0)0.037bar(037)larr" Subtract")#
# color(white)("d") 999x=37#

#x=37/999 = 1/27#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Check")#

#x^(-2/3) = 1/(x^(2/3))#

Consider #x^(2/3)->(1/27)^(2/3)= 0.11bar1#

#1/(x^(2/3))=1/(0.11bar1) = 9 color(red)(larr" As required")#