How do you solve # x^2+5x+8=0#?
1 Answer
Explanation:
Pre-multiply by
#a^2-b^2 = (a-b)(a+b)#
with
#0 = 4(x^2+5x+8)#
#=4x^2+20x+32#
#=(2x)^2+2(2x)(5)+32#
#=(2x+5)^2-25+32#
#=(2x+5)^2+7#
#=(2x+5)^2-(sqrt(7)i)^2#
#=((2x+5)-sqrt(7)i)((2x+5)+sqrt(7)i)#
#=(2x+5-sqrt(7)i)(2x+5+sqrt(7)i)#
So:
So:
Alternatively, use the quadratic formula:
The equation
This has roots given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#(-5+-sqrt(5^2-(4*1*8)))/(2*1)#
#=(-5+-sqrt(25-32))/2#
#=(-5+-sqrt(-7))/2#
#=(-5+-sqrt(7)i)/2#
#=-5/2+-sqrt(7)/2i#