How do you solve #x^2-7x-6=0# using the quadratic formula?

1 Answer
Aug 10, 2015

Answer:

#x=(7+sqrt(73))/(2)# or #x=(7-sqrt(73))/(2)#

Explanation:

The quadratic formula states that for a quadratic equation #ax^2+bx+c#, its roots, #x# can be computed as #x = (-b+-sqrt(b^2-4ac))/(2a)#

Consider the quadratic equation #x^2-7x-6=0#. It has coefficients #a=1#, #b=-7# and #c=-6#. To solve for #x#, we plug these numbers into the quadratic formula.

#x = (-(-7)+-sqrt((-7)^2-4(1)(-6)))/(2(1))#
#x = (7+-sqrt(73))/(2)#

Hence, #x=(7+sqrt(73))/(2)# or #x=(7-sqrt(73))/(2)#