How do you solve #x^2 - 8x + 2 = 0# using the quadratic formula?

1 Answer
Jun 3, 2017

Answer:

7.74, 0.26

Explanation:

As per quadratic formula, #x =[-b+-sqrt(b^2-4ac)]/[2a] # here, a = 1, b = - 8 & c= 2

Put all these values, we get #x = [-(-8)+- sqrt{(-8)^2-4*1*2}]/[2*1]#

#rArr x = [+8 +- sqrt(64-8)]/2#

#rArr x = [8+- sqrt56]/2#

#rArr x = [8+-7.48]/2#

#rArr x = (8+7.48)/2, (8-7.48)/2#

#rArr x = 15.48/2, 0.52/2#

#rArr x = 7.74, 0.26#