How do you solve #x^2 + 8x = 24# using the quadratic formula?

1 Answer
Sep 11, 2016

Answer:

#x = - 4 pm 2 sqrt(10)#

Explanation:

We have: #x^(2) + 8 x = 24#

First, let's subtract #24# from both sides of the equation:

#=> x^(2) + 8 x - 24 = 0#

Then, let's apply the quadratic formula:

#=> x = (- 8 pm sqrt(8^(2) - 4 (1) (- 24))) / (2 (1))#

#=> x = (- 8 pm sqrt(64 + 96)) / (2)#

#=> x = (- 8 pm sqrt(160)) / (2)#

#=> x = (- 8 pm 4 sqrt(10)) / (2)#

#=> x = - 4 pm 2 sqrt(10)#

Therefore, the solutions to the equation are #x = - 4 - 2 sqrt(10)# and #x = - 4 + 2 sqrt(10)#.