How do you solve #(y-3)^2=4y-12#?

2 Answers
Aug 4, 2016

#y=7#

Explanation:

#(y-3)^2=4y-12#
or
#(y-3)^2=4(y-3)#
or
#y-3=4#
or
#y=4+3#
or
#y=7#

Aug 4, 2016

#y=+3" and "y=+7# are solutions

Explanation:

This is a quadratic in #y#

That is: instead of #y=ax^2+bx+c# we have #x=ay^2+by+c#

This has the effect of rotation the standard graph of #uu# to #sub#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given:#" "(y-3)^2=4y-12#

Write as:#" "(y-3)^2-4y+12=0#

Set as equal to #x# giving:

#x=(y-3)^2-4y+12#

Squaring the bracket

#x=y^2-6y+9-4y+12 color(red)(" "larr" "-12" corrected to "+12)#

#x=y^2-10y-21 #

Note that #3xx7=21 " and that "3+7=10#

Factorising

#x=0=(y-3)(y-7)#

#y=+3" and "y=+7# are solutions

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B