We can use Pascal's triangle to solve this problem.
The triangle values for the exponent 3 are:
#color(red)(1)color(white)(.........)color(red)(6)color(white)(.........)color(red)(15)color(white)(.........)color(red)(20)color(white)(.........)color(red)(15)color(white)(.........)color(red)(6)color(white)(.........)color(red)(1)#
Therefore #(color(blue)(x^3y) - color(green)(1))^6# can be expanded as:
#color(red)(1)(color(blue)(x^3y))^6(color(green)(-1))^0 + color(red)(6)(color(blue)(x^3y))^5(color(green)(-1))^1 + color(red)(15)(color(blue)(x^3y))^4(color(green)(-1))^2 + color(red)(20)(color(blue)(x^3y))^3(color(green)(-1))^3 + color(red)(15)(color(blue)(x^3y))^2(color(green)(-1))^4 + color(red)(6)(color(blue)(x^3y))^1(color(green)(-1))^5 + color(red)(1)(color(blue)(x^3y))^0(color(green)(-1))^6#
#color(red)(1)(color(blue)(x^18y^6))1 + color(red)(6)(color(blue)(x^15y^5))(color(green)(-1)) + color(red)(15)(color(blue)(x^12y^4))color(green)(1) + color(red)(20)(color(blue)(x^9y^3))(color(green)(-1)) + color(red)(15)(color(blue)(x^6y^2))color(green)(1) + color(red)(6)(color(blue)(x^3y))(color(green)(-1)) + (color(red)(1)) (color(blue)(1))(color(green)(1))#
#x^18y^6 - 6x^15y^5 + 15x^12y^4 - 20x^9y^3 + 15x^6y^2 - 6x^3y + 1#