Step 1) Because the first equation is already solved for #y# we can substitute #-6x - 32# for #y# in the second equation and solve for #x#:
#2y = 10x + 46# becomes:
#2(-6x - 32) = 10x + 46#
#(2 * -6x) - (2 * 32) = 10x + 46#
#-12x - 64 = 10x + 46#
#color(red)(12x) - 12x - 64 - color(red)(46) = color(red)(12x) + 10x + 46 - color(red)(46)#
#0 - 110 = (color(red)(12) + 10)x + 0#
#-110 = 22x#
#-110/color(red)(22) = (22x)/color(red)(22)#
#-5 = (color(red)(cancel(color(black)(22)))x)/cancel(color(red)(22))#
#-5 = x#
#x = -5#
Step 2) Substitute #-5# for #x# in the first equation and calculate #y#:
#y = -6x - 32# becomes:
#y = (-6 xx -5) - 32#
#y = 30 - 32#
#y = -2#
The solution is: #x = -5# and #y = -2# or #(-5, -2)#