How do you use substitutions to solve #5x - 2y = - 19# and #x - 3y = - 9#?

1 Answer
Feb 22, 2017

See the entire solution process below:#

Explanation:

Step 1) Solve the second equation or #x#:

#x - 3y = -9#

#x - 3y + color(red)(3y) = -9 + color(red)(3y)#

#x - 0 = -9 + 3y#

#x = -9 + 3y#

Step 2) Substitute #-9 + 3y# for #x# in the first equation and solve for #y#:

#5x - 2y = -19# becomes:

#5(-9 + 3y) - 2y = -19#

#(5 xx -9) + (5 xx 3y) - 2y = -19#

#-45 + 15y - 2y = -19#

#-45 + 13y = -19#

#color(red)(45) - 45 + 13y = color(red)(45) - 19#

#0 + 13y = 26#

#13y = 26#

#(13y)/color(red)(13) = 26/color(red)(13)#

#(color(red)(cancel(color(black)(13)))y)/cancel(color(red)(13)) = 2#

#y = 2#

Step 3) Substitute #2# for #y# in the solution for the second equation at the end of Step 1 and calculate #x#:

#x = -9 + 3y# becomes:

#x = -9 + (3 xx 2)#

#x = -9 + 6#

#x = -3#

The solution is: #x = -3# and #y = 2# or #(-3, 2)#