Step 1) Solve the second equation or #x#:
#x - 3y = -9#
#x - 3y + color(red)(3y) = -9 + color(red)(3y)#
#x - 0 = -9 + 3y#
#x = -9 + 3y#
Step 2) Substitute #-9 + 3y# for #x# in the first equation and solve for #y#:
#5x - 2y = -19# becomes:
#5(-9 + 3y) - 2y = -19#
#(5 xx -9) + (5 xx 3y) - 2y = -19#
#-45 + 15y - 2y = -19#
#-45 + 13y = -19#
#color(red)(45) - 45 + 13y = color(red)(45) - 19#
#0 + 13y = 26#
#13y = 26#
#(13y)/color(red)(13) = 26/color(red)(13)#
#(color(red)(cancel(color(black)(13)))y)/cancel(color(red)(13)) = 2#
#y = 2#
Step 3) Substitute #2# for #y# in the solution for the second equation at the end of Step 1 and calculate #x#:
#x = -9 + 3y# becomes:
#x = -9 + (3 xx 2)#
#x = -9 + 6#
#x = -3#
The solution is: #x = -3# and #y = 2# or #(-3, 2)#