How do you use the chain rule to differentiate #y=sin^2(cos(4x))#?

1 Answer
Dec 11, 2017

#dy/dx = -8sin(4x)sin(cos(4x))cos(cos(4x))#

Explanation:

#y= sin^2(cos(4x))#

Apply the chain rule and power rule

#dy/dx = 2sin(cos(4x)) * d/dx sin(cos(4x))#

Apply the chain rule and standard differential

#dy/dx= 2sin(cos(4x)) * cos(cos(4x)) * d/dx cos(4x)#

Apply the chain rule and standard differential again

#dy/dx= 2sin(cos(4x)) * cos(cos(4x)) * -sin(4x) *d/dx 4x#

Apply power rule

#dy/dx= 2sin(cos(4x)) * cos(cos(4x)) * -sin(4x) *(4)#

#= -8sin(4x)sin(cos(4x))cos(cos(4x))#