How do you use the chain rule to differentiate #y=sqrt(-x^4-1)(-x-2)#? Calculus Basic Differentiation Rules Chain Rule 1 Answer Bdub Nov 1, 2016 #y'=(3x^4+4x^3+1)/sqrt(-x^4-1)# Explanation: #y=sqrt(-x^4-1)*(-x-2)=(-x^4-1)^(1/2)(-x-2)# Use product rule and chain rule #f=(-x^4-1)^(1/2), g=-x-2# #f'=1/2(-x^4-1)^(-1/2)*-4x^3, g'=-1# #y'=fg'+gf'# #y'=-sqrt(-x^4-1)+(2x^4+4x^3)/sqrt(-x^4-1)# #y'=(-(-x^4-1)+2x^4+4x^3)/sqrt(-x^4-1)# #y'=(x^4+1+2x^4+4x^3)/sqrt(-x^4-1)# #y'=(3x^4+4x^3+1)/sqrt(-x^4-1)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1630 views around the world You can reuse this answer Creative Commons License