As #f(x) = x^2 +4x# is a polynomial function, it is continuous for every #x in RR#, then:
#lim_(x->2) f(x) = f(2) = 2^2+4xx2 = 4 + 8 = 12#
Evaluate now:
#abs (f(x) -12) = abs (x^2+4x-12)#
#abs (f(x) -12) = abs ((x-2)(x+6))#
#abs (f(x) -12) = abs (x-2)abs(x+6)#
Given now #epsilon > 0#, choose #delta_epsilon < min(1,epsilon/9)#
For #x in (2-delta_epsilon, 2+delta_epsilon)# we have that:
#abs (x-2) < delta_epsilon < epsilon/9#
And as #(x+6) # is positive in the interval:
#abs(x+6) = x+6 <= 2+delta_epsilon + 6 < 2+1+6 =9#
Then:
#abs (f(x) -12) = abs (x-2)abs(x+6) < epsilon/9 xx 9 = epsilon#