#• " the x and y intercepts"#
#• " shape, minimum / maximum"#
#• " coordinates of the vertex"#
#color(blue)"to obtain the intercepts"#
#• " let x = 0, in the equation for y-intercept"#
#• " let y = 0, in the equation for x-intercepts"#
#x=0toy=-6larrcolor(red)" y-intercept"#
#y=0to-x^2-3x-6=0#
#"check the discriminant " Delta=b^2-4ac#
#"here " a=-1,b=-3" and " c=-6#
#b^2-4ac=(-3)^2-(4xx1xx-6)=-15<0#
#Delta<0rArr" no real roots, no x-intercepts"#
#color(blue)"maximum / minimum"#
#• " If " a>0" then minimum " uuu#
#• "If " a<0" then maximum " nnn#
#"here " a=-1<0rArrnnn#
#color(blue)"coordinates of vertex"#
#x_(color(red)"vertex")=-b/(2a)=-(-3)/(-2)=-3/2#
#"substitute this value into function for y"#
#rArry_(color(red)"vertex")=(-3/2)^2-3(-3/2)-6=-15/4#
#rArrcolor(magenta)"vertex" =(-3/2,-15/4)#
graph{-x^2-3x-6 [-20, 20, -10, 10]}