How do you use the important points to sketch the graph of #f(x) = (x - 7)^2#?

1 Answer
Apr 14, 2016

See explanantion

Explanation:

The given equation is in vertex form: #y=a(x+b/(2a))^2 +k#

Where #(-1)xx b/(2a) = x_("vertex")# and #y_("vertex")=k#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#y=(x-7)^2+0#

#color(blue)(=> "Vertex" -> (x,y)->(7,0))#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expanding the brackets gives

#y=x^2-14x+49#

#color(blue)(y_("intercept")=49)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("As the coefficient of "x^2" is +1 the graph is of general shape "uu)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("As the y part of the vertex is 0 it means that the x-axis is tangential")# #color(brown)("to the curve. In other words, the curve does not cross the x-axis.")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Just out of interest take another look at: #y=x^2-14x+49#

Notice that #->x_("vertex")=(-1/2)xx(-14)=+7#