How do you use the important points to sketch the graph of #y = x^2 - 2x + 5#?
1 Answer
see explanation.
Explanation:
#" the following points are useful"#
#• " coordinates of vertex"#
#• " x and y intercepts"#
#• " shape- maximum or minimum"#
#color(blue)"coordinates of vertex"#
#"for the standard quadratic function "#
#y=ax^2+bx+c ; a!=0#
#"the x-coordinate of the vertex is"#
#x_(color(red)"vertex")=-b/(2a)#
#"here " a=1,b=-2" and " c=5#
#rArrx_(color(red)"vertex")=-(-2)/2=1#
#"substitute this value into function to obtain y"#
#y_(color(red)"vertex")=1^2-2(1)+5=4#
#rArrcolor(magenta)"vertex " =(1,4)#
#color(blue)"Intercepts"#
#• "let x = 0, in function, for y-intercept"#
#• " let y = 0, in function, for x-intercept"#
#x=0toy=5larrcolor(red)" y-intercept"#
#y=0tox^2-2x+5=0#
#"calculate the value of the "color(blue)"discriminant"#
#b^2-4ac=(-2)^2-(4xx1xx5)=4-20=-16#
#"since discriminant " < 0" there are no x-intercepts"#
#color(blue)"shape of parabola"#
#• " if " a>0" then minimum " uuu#
#• " if " a<0" then maximum " nnn#
#"here " a=1 >0rArr" minimum"#
#"plot the points " (0,5)" and "# (1,4)
#"and draw a smooth curve through them"#
graph{x^2-2x+5 [-10, 10, -5, 5]}