How do you use the important points to sketch the graph of #y = x^2 - 2x + 5#?

1 Answer
May 7, 2017

see explanation.

Explanation:

#" the following points are useful"#

#• " coordinates of vertex"#

#• " x and y intercepts"#

#• " shape- maximum or minimum"#

#color(blue)"coordinates of vertex"#

#"for the standard quadratic function "#

#y=ax^2+bx+c ; a!=0#

#"the x-coordinate of the vertex is"#

#x_(color(red)"vertex")=-b/(2a)#

#"here " a=1,b=-2" and " c=5#

#rArrx_(color(red)"vertex")=-(-2)/2=1#

#"substitute this value into function to obtain y"#

#y_(color(red)"vertex")=1^2-2(1)+5=4#

#rArrcolor(magenta)"vertex " =(1,4)#

#color(blue)"Intercepts"#

#• "let x = 0, in function, for y-intercept"#

#• " let y = 0, in function, for x-intercept"#

#x=0toy=5larrcolor(red)" y-intercept"#

#y=0tox^2-2x+5=0#

#"calculate the value of the "color(blue)"discriminant"#

#b^2-4ac=(-2)^2-(4xx1xx5)=4-20=-16#

#"since discriminant " < 0" there are no x-intercepts"#

#color(blue)"shape of parabola"#

#• " if " a>0" then minimum " uuu#

#• " if " a<0" then maximum " nnn#

#"here " a=1 >0rArr" minimum"#

#"plot the points " (0,5)" and "#(1,4)
#"and draw a smooth curve through them"#
graph{x^2-2x+5 [-10, 10, -5, 5]}