How do you use the quadratic formula to solve #8cos^2theta-7costheta+1=0# for #0<=theta<360#?
1 Answer
Jul 13, 2017
Explanation:
#"let " x=costheta#
#rArr8cos^2theta-7costheta+1=0#
#-=8x^2-7x+1=0#
#"solve using the "color(blue)"quadratic formula"#
#"with " a=8,b=-7,c=1#
#rArrx=(7+-sqrt(49-32))/16=7/16+-1/16sqrt17#
#rArrcostheta=7/16+1/16sqrt17" or " costheta=7/16-1/16sqrt17#
#rArrcostheta=0.6952" or " costheta=0.1798#
#rArrtheta=45.96^@" or " theta=79.64^@#
#"these are the "color(blue)"related acute angles"#
#"since " theta>0" in both cases then "theta" lies in"#
#"quadrants 1 and 4"#
#theta=45.96" or "theta=(360-45.96)#
#rArrtheta=45.96" or "314.04#
#color(red)"Also"#
#theta=79.64" or "theta=(360-79.64)#
#rArrtheta=79.64" or " 280.36#
#color(blue)"the solutions are"#
#theta=45.96^@,79.64^@,280.36^@,314.04^@to[0,360)#