How do you write a quadratic function in standard form whose graph passes through points (3,15), (-4,121/2), (1/3, -7/3)?

1 Answer
Mar 17, 2017

Because you specified a "function", we must use the standard form:
#y = ax^2+bx+c#
Use the 3 points to write 3 equations and then use linear algebra techniques to solve for #a, b, and c#

Explanation:

NOTE: If you did not specify a "function" then there would be two equations; the second one would be the standard form:

#x = ay^2+bx+c#

Returning to the function.

Using the point #(3,15)#:

#a(3)^2 + b(3)+c = 15#

This makes the first line of the augmented matrix:

#[(9,3,1,|,15)]#

Using the point #(-4,121/2)#

#a(-4)^2 + b(-4)+c = 121/2#

#16a - 4b+c = 121/2#

Multiply by 2:

#32a - 8b+2c = 121#

Add this line to the augmented matrix:

#[(9,3,1,|,15), (32,-8,2,|,121)]#

Use the point #(1/3,-7/3)#

#a(1/3)^2 + b(1/3)+c = -7/3#

#1/9a + 1/3b +c = -7/3#

Multiply by 9:

#a + 3b +9c = -21#

Add this line to the top of the augmented matrix:

#[(1,3,9,|,-21), (9,3,1,|,15), (32,-8,2,|,121)]#

Perform elementary row operations:

#R_2-9R_1toR_2#

#[(1,3,9,|,-21), (0,-24,-80,|,204), (32,-8,2,|,121)]#

#R_3-32R_1toR_3#

#[(1,3,9,|,-21), (0,-24,-80,|,204), (0,-104,-286,|,793)]#

#R_2/-4#

#[(1,3,9,|,-21), (0,6,20,|,-51), (0,-104,-286,|,793)]#

#3R_3+52R_2toR_3#

#[(1,3,9,|,-21), (0,6,20,|,-51), (0,0,182,|,-273)]#

#R_3/182#

#[(1,3,9,|,-21), (0,6,20,|,-51), (0,0,1,|,-3/2)]#

#R_2-20R_3toR_2#

#[(1,3,9,|,-21), (0,6,0,|,-21), (0,0,1,|,-3/2)]#

#R_2/6#

#[(1,3,9,|,-21), (0,1,0,|,-7/2), (0,0,1,|,-3/2)]#

#R_1-9R_3toR_1#

#[(1,3,0,|,-15/2), (0,1,0,|,-7/2), (0,0,1,|,-3/2)]#

#R_1-3R_2toR_1#

#[(1,0,0,|,3), (0,1,0,|,-7/2), (0,0,1,|,-3/2)]#

#a = 3, b = -7/2, and c = -3/2#

#y = 3x^2-7/2x-3/2" "larr# The answer

Check:

#3(3)^2-7/2(3)-3/2=15#
#3(-4)^2-7/2(-4)-3/2=121/2#
#3(1/3)^2-7/2(1/3)-3/2=-7/3#

#15=15#
#121/2=121/2#
#-7/3=-7/3#

This checks.