NOTE: If you did not specify a "function" then there would be two equations; the second one would be the standard form:
#x = ay^2+bx+c#
Returning to the function.
Using the point #(3,15)#:
#a(3)^2 + b(3)+c = 15#
This makes the first line of the augmented matrix:
#[(9,3,1,|,15)]#
Using the point #(-4,121/2)#
#a(-4)^2 + b(-4)+c = 121/2#
#16a - 4b+c = 121/2#
Multiply by 2:
#32a - 8b+2c = 121#
Add this line to the augmented matrix:
#[(9,3,1,|,15),
(32,-8,2,|,121)]#
Use the point #(1/3,-7/3)#
#a(1/3)^2 + b(1/3)+c = -7/3#
#1/9a + 1/3b +c = -7/3#
Multiply by 9:
#a + 3b +9c = -21#
Add this line to the top of the augmented matrix:
#[(1,3,9,|,-21),
(9,3,1,|,15),
(32,-8,2,|,121)]#
Perform elementary row operations:
#R_2-9R_1toR_2#
#[(1,3,9,|,-21),
(0,-24,-80,|,204),
(32,-8,2,|,121)]#
#R_3-32R_1toR_3#
#[(1,3,9,|,-21),
(0,-24,-80,|,204),
(0,-104,-286,|,793)]#
#R_2/-4#
#[(1,3,9,|,-21),
(0,6,20,|,-51),
(0,-104,-286,|,793)]#
#3R_3+52R_2toR_3#
#[(1,3,9,|,-21),
(0,6,20,|,-51),
(0,0,182,|,-273)]#
#R_3/182#
#[(1,3,9,|,-21),
(0,6,20,|,-51),
(0,0,1,|,-3/2)]#
#R_2-20R_3toR_2#
#[(1,3,9,|,-21),
(0,6,0,|,-21),
(0,0,1,|,-3/2)]#
#R_2/6#
#[(1,3,9,|,-21),
(0,1,0,|,-7/2),
(0,0,1,|,-3/2)]#
#R_1-9R_3toR_1#
#[(1,3,0,|,-15/2),
(0,1,0,|,-7/2),
(0,0,1,|,-3/2)]#
#R_1-3R_2toR_1#
#[(1,0,0,|,3),
(0,1,0,|,-7/2),
(0,0,1,|,-3/2)]#
#a = 3, b = -7/2, and c = -3/2#
#y = 3x^2-7/2x-3/2" "larr# The answer
Check:
#3(3)^2-7/2(3)-3/2=15#
#3(-4)^2-7/2(-4)-3/2=121/2#
#3(1/3)^2-7/2(1/3)-3/2=-7/3#
#15=15#
#121/2=121/2#
#-7/3=-7/3#
This checks.