How do you write an equation of a polynomials with zeros: -3,0, 4; degree 3?

1 Answer
Dec 6, 2017

Answer:

#p(x)=x^3-x^2-12x#

Explanation:

#"given the zeros of a polynomial say"#

#x=a,x=b" and "x=c#

#"then the factors are "(x-a),(x-b)" and "(x-c)#

#"the polynomial is the product of the factors"#

#rArrp(x)=k(x-a)(x-b)(x-c)larrcolor(blue)"k is a multiplier"#

#"here "x=-3,x=0,x=4larrcolor(blue)"zeros"#

#rArr(x+3),(x-0)" and "(x-4)" are the factors"#

#"letting "k=1#

#p(x)=x(x+3)(x-4)#

#color(white)(p(x))=x(x^2-x-12)#

#color(white)(p(x))=x^3-x^2-12xlarrcolor(blue)"is a possible polynomial"#