How do you write the equation of the parabola in vertex form given vertex (3, -2), point (2, 3)?

1 Answer
Sep 6, 2017

#y=5(x-3)^2-2#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where (h , k ) are the coordinates of the vertex and a is a constant.

#"here "(h,k)=(3,-2)#

#rArry=a(x-3)^2-2#

#"to find a substitute "(2,3)" into the equation"#

#3=a-2rArra=5#

#rArry=5(x-3)^2-2larrcolor(red)" in vertex form"#
graph{5(x-3)^2-2 [-10, 10, -5, 5]}