How do you write the quadratic function in standard form given points #(-2,-1)#, #(1,11)#, #(2, 27)#?
2 Answers
Explanation:
Given points
#f(x) = y_1((x-x_2)(x-x_3))/((x_1-x_2)(x_1-x_3))+y_2((x-x_1)(x-x_3))/((x_2-x_1)(x_2-x_3))+y_3((x-x_1)(x-x_2))/((x_3-x_1)(x_3-x_2))#
This works because each rational expression like:
#((x-x_2)(x-x_3))/((x_1-x_2)(x_1-x_3))#
is constructed so that it takes the value
See https://socratic.org/s/aAEj5Fvc for another example of this method.
In our example:
#(x_1, y_1) = (-2, -1)#
#(x_2, y_2) = (1, 11)#
#(x_3, y_3) = (2, 27)#
So:
#f(x) = (-1)((x-1)(x-2))/(((-2)-1)((-2)-2))+(11)((x-(-2))(x-2))/((1-(-2))(1-2))+(27)((x-(-2))(x-1))/((2-(-2))(2-1))#
#color(white)(f(x)) = (-1)(x^2-3x+2)/12+(11)(x^2-4)/(-3)+(27)(x^2+x-2)/4#
#color(white)(f(x)) = 1/12(-x^2+3x-2-44x^2+176+81x^2+81x-162)#
#color(white)(f(x)) = 1/12(36x^2+84x+12)#
#color(white)(f(x)) = 3x^2+7x+1#
Explanation:
Given points:
#(-2, -1)# ,#(1, 11)# ,#(2, 27)#
We want to find a function of the form:
#f(x) = ax^2+bx+c#
passing through all three points.
Substitute the coordinates of the three points into the formula for
#-1 = a(-2)^2+b(-2)+c = 4a-2b+c#
#11 = a(1)^2+b(1)+c = a+b+c#
#27 = a(2)^2+b(2)+c = 4a+2b+c#
Subtracting the first of these three equations from the third, we get:
#28 = 4b#
So:
#b = 7#
Adding the first and third equations, we get:
#26 = 8a+2c#
Then subtracting twice the second equation from this one, we get:
#4 = 6a-2b = 6a-14#
Add
#18 = 6a#
Hence:
#a = 3#
Then from the second equation:
#c = 11 - a - b = 11-7-3 = 1#
So:
#f(x) = 3x^2+7x+1#