How do you write the quadratic function in standard form given points #(-2,-1)#, #(1,11)#, #(2, 27)#?

2 Answers
Dec 21, 2016

#f(x) = 3x^2+7x+1#

Explanation:

Given points #(x_1, y_1)#, #(x_2, y_2)# and #(x_3, y_3)#, the quadratic function passing through them can be written as:

#f(x) = y_1((x-x_2)(x-x_3))/((x_1-x_2)(x_1-x_3))+y_2((x-x_1)(x-x_3))/((x_2-x_1)(x_2-x_3))+y_3((x-x_1)(x-x_2))/((x_3-x_1)(x_3-x_2))#

This works because each rational expression like:

#((x-x_2)(x-x_3))/((x_1-x_2)(x_1-x_3))#

is constructed so that it takes the value #1# at the selected #x# coordinate (#x_1# in this case) and #0# at the two other #x# coordinates (#x_2# and #x_3# in this case).

See https://socratic.org/s/aAEj5Fvc for another example of this method.

In our example:

#(x_1, y_1) = (-2, -1)#

#(x_2, y_2) = (1, 11)#

#(x_3, y_3) = (2, 27)#

So:

#f(x) = (-1)((x-1)(x-2))/(((-2)-1)((-2)-2))+(11)((x-(-2))(x-2))/((1-(-2))(1-2))+(27)((x-(-2))(x-1))/((2-(-2))(2-1))#

#color(white)(f(x)) = (-1)(x^2-3x+2)/12+(11)(x^2-4)/(-3)+(27)(x^2+x-2)/4#

#color(white)(f(x)) = 1/12(-x^2+3x-2-44x^2+176+81x^2+81x-162)#

#color(white)(f(x)) = 1/12(36x^2+84x+12)#

#color(white)(f(x)) = 3x^2+7x+1#

Dec 21, 2016

#f(x) = 3x^2+7x+1#

Explanation:

Given points:

#(-2, -1)#, #(1, 11)#, #(2, 27)#

We want to find a function of the form:

#f(x) = ax^2+bx+c#

passing through all three points.

Substitute the coordinates of the three points into the formula for #f(x)# to get #3# simultaneous linear equations:

#-1 = a(-2)^2+b(-2)+c = 4a-2b+c#

#11 = a(1)^2+b(1)+c = a+b+c#

#27 = a(2)^2+b(2)+c = 4a+2b+c#

Subtracting the first of these three equations from the third, we get:

#28 = 4b#

So:

#b = 7#

Adding the first and third equations, we get:

#26 = 8a+2c#

Then subtracting twice the second equation from this one, we get:

#4 = 6a-2b = 6a-14#

Add #14# to both ends to get:

#18 = 6a#

Hence:

#a = 3#

Then from the second equation:

#c = 11 - a - b = 11-7-3 = 1#

So:

#f(x) = 3x^2+7x+1#