# How do you write y-1=4/5(x+5) in slope intercept form?

Dec 17, 2016

$y = \frac{4}{5} x + 5$

#### Explanation:

The slope intercept for is: $\textcolor{red}{y = m x + b}$
Where $m$ is the slope and $b$ is the y-intercept.

We must solve the equation given for $y$:

$y - 1 = \frac{4}{5} x + \frac{4}{5} \cdot 5$

$y - 1 = \frac{4}{5} x + \frac{4}{\cancel{5}} \cdot \cancel{5}$

$y - 1 = \frac{4}{5} x + 4$

$y - 1 + 1 = \frac{4}{5} x + 4 + 1$

$y - 0 = \frac{4}{5} x + 5$

$y = \frac{4}{5} x + 5$

Dec 17, 2016

$y = \frac{4}{5} x + 5$

#### Explanation:

The equation of a line in $\textcolor{b l u e}{\text{slope-intercept form}}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{y = m x + b} \textcolor{w h i t e}{\frac{2}{2}} |}}}$
where m represents the slope and b, the y-intercept.

Begin with distributing the bracket.

$\Rightarrow y - 1 = \frac{4}{5} x + 4$

$\Rightarrow y = \frac{4}{5} x + 5 \leftarrow \text{ in slope-intercept form}$