How do you write #y+6=-3/4(x+8)# in slope intercept form?

1 Answer
Jul 15, 2017

Answer:

See a solution process below:

Explanation:

The slope-intercept form of a linear equation is: #y = color(red)(m)x + color(blue)(b)#

Where #color(red)(m)# is the slope and #color(blue)(b)# is the y-intercept value.

Therefore we must solve this equation for #y#:

#y + 6 = -3/4(x + 8)#

#y + 6 = (-3/4 xx x) + (-3/4 xx 8)#

#y + 6 = -3/4x + (-3/color(red)(cancel(color(black)(4))) xx color(red)(cancel(color(black)(8)))2)#

#y + 6 = -3/4x + (-6)#

#y + 6 = -3/4x - 6#

#y + 6 - color(red)(6) = -3/4x - 6 - color(red)(6)#

#y + 0 = -3/4x - 12#

#y = color(red)(-3/4)x - color(blue)(12)#