How Solve it? Differentiate this function, thank you!

enter image source here

1 Answer
Mar 15, 2017

#(df)/(dx)=20x(4x^2-7x-8)(6x^2-7x-4)#

Explanation:

As we have to find derivative of a product of polynomials, we can use product rule here. It states that if #f(x)=g(x)h(x)k(x)#

then #(df)/(dx)=#

#(dg)/(dx)xxh(x)xxk(x)+(dh)/(dx)xxg(x)xxk(x)+(dk)/(dx)xxg(x)xxh(x)#

Here #f(x)=5x^2(4x^2-7x-8)^2#

= #5x^2(4x^2-7x-8)(4x^2-7x-8)#

Hence #(df)/(dx)=#

#5xx2x(4x^2-7x-8)(4x^2-7x-8)+(8x-7)xx5x^2(4x^2-7x-8)+(8x-7)xx5x^2(4x^2-7x-8)#

= #10x(4x^2-7x-8)^2+2xx5x^2(8x-7)(4x^2-7x-8)#

= #10x((4x^2-7x-8)^2+x(8x-7)(4x^2-7x-8))#

= #10x(4x^2-7x-8)((4x^2-7x-8)+x(8x-7))#

= #10x(4x^2-7x-8)(4x^2-7x-8+8x^2-7x)#

= #10x(4x^2-7x-8)(12x^2-14x-8)#

= #20x(4x^2-7x-8)(6x^2-7x-4)#