How to calculate? (f*g) ' ?

Derivations

1 Answer
Feb 25, 2018

#(f*g)'=fg'+gf'# See below for proof.

Explanation:

We can prove the above Product Rule by using the definition of the derivative:

#f'(x)=lim_(h->0)(f(x+h)-f(x))/h#

#(fg)'=lim_(h->0)(f(x+h)g(x+h)-f(x)g(x))/h#

Manipulate things around a bit by subtracting out and adding in #f(x+h)g(x)# to the numerator. This is essentially the same as adding #0:#

#(fg)'=lim_(h->0)(f(x+h)g(x+h)-f(x+h)g(x)+f(x+h)g(x)-f(x)g(x))/h#

Break up the limit into two pieces:

#(fg)'=lim_(h->0)(f(x+h)g(x+h)-f(x+h)g(x))/h + lim_(h->0)(f(x+h)g(x)-f(x)g(x))/h#

Factor #f(x+h)# from the numerator of the first limit and #g(x)# from the numerator of the second limit:

#(fg)'=lim_(h->0)(f(x+h)(g(x+h)-g(x)))/h + lim_(h->0)(g(x)(f(x+h)-f(x)))/h#

#(fg)'=(lim_(h->0)f(x+h) * lim_(h->0)(g(x+h)-g(x))/h) + (lim_(h->0)g(x) * lim_(h->0)(f(x+h)-f(x))/h#

The individual limits are:
#lim_(h->0)g(x)=g(x)#

#lim_(h->0)f(x+h)=f(x)#

#lim_(h->0)(f(x+h)-f(x))/h=f'(x)#

#lim_(h->0)(g(x+h)-g(x))/h=g'(x)#

Plugging #f(x), g(x), f'(x), g'(x)# into #(fg)'=(lim_(h->0)f(x+h) * lim_(h->0)(g(x+h)-g(x))/h) + (lim_(h->0)g(x) * lim_(h->0)(f(x+h)-f(x))/h# gives:

#(fg)'=fg'+gf'#