How to calculate this? #lim_(n->oo)int_(1/n)^n(arctanx^2)/(1+x^2)dx#.
1 Answer
May 22, 2017
#I=int(arctanx)^2/(1+x^2)dx#
Letting
#I=intu^2du=1/3u^3=1/3(arctanx)^3+C#
So:
#int_(1/n)^n(arctanx)^2/(1+x^2)dx=1/3(arctan(n))^3-1/3(arctan(1/n))^3#
Note that
#lim_(nrarroo)int_(1/n)^n(arctanx)^2/(1+x^2)dx=1/3(pi/2)^3-1/3(arctan(0))^3#
#=1/3(pi^3/8)=pi^3/24#