How to find a function f such that f′(x)=3x^3 and the line x+y=0 is tangent to the graph of f ?

1 Answer
Sep 6, 2015

It's messy, but I got #f(x) = 3/4x^4+(root(3)9)/4#

Explanation:

We need: #f'(x) = 3x^3#,

So we must have:

#f(x) = 3/4 x^4+C# for some constant #C#.

In order to be tangent to #y=-x#, we need an #a# with #f'(a) = -1#.

Solving #3x^3=-1#, we get #x=-1/root(3)3#.

So we want #y=-x# to be tangent at #a = -1/root(3)3#.

Now we find #f(a) = f(-1/root(3)3)#

#f(-1/root(3)3) = 3/4 1/(3root(3)3) + C = 1/(4root(3)3) = root(3)9/12 +C#

At the point #(-1/root(3)3, (root(3)9)/12+C)#, the tangent line is:

#y-((root(3)9)/12+C) = -1(x-(-1/root(3)3))#

#y-((root(3)9)/12+C)= -1x-1/root(3)3#

#y = -1x-1/root(3)3 + ((root(3)9)/12+C)#

#y = -1x - (4root(3)9)/12 + (root(3)9)/12+C#

#y = -x -(3root(3)9)/12 +C#

#y = -x - root(3)9/4 +C#

In order for the tangent line to be #y=-x#, we must have #C = root(3)9/4#

Now that we've finished, let's look at the graph.

enter image source here

(Image using Desmos https://www.desmos.com/calculator )

Here is Socratic's graphing utility graph.

graph{(y-3/4x^4-(root(3)9)/4)(x+y)=0 [-3.158, 1.708, -0.457, 1.976]}