How to find the area bounded by the given curves?

#y=x^2e^-x# and #y=xe^-x#

1 Answer
Mar 22, 2018

The area between the curves is #1.208#

Explanation:

Start by finding the intersection points, by solving the system #{(y =x^2e^-x), (y = xe^-x):}#.

#x^2e^-x = xe^-x#

#x^2e^-x -xe^-x = 0#

#xe^-x(x - 1) = 0#

It becomes clear that #x =0# and #x= 1#. These will be our bounds of integration. We now must determine which curve lies above which. We see that when #x= 0.5#, #x^2e^-x < xe^-x#. Thus our integral expression is as follows:

#A = int_0^1 xe^-x - x^2e^-x#

We're going to need to apply integration by parts for both integrals.

Recall that #int udv = uv - int vdu#. We let #dv = e^-x# and #u = x^2#. Therefore #v= -e^-x# and #du = 2x#.

Thus

#intx^2e^-x dx = -x^2e^-x - int -2xe^-xdx#

#intx^2e^-x dx = -x^2e^-x + int 2xe^-x dx#

We apply integration by parts one more time, this time with #u = 2x# and #dv = e^-x#. Therefore #du = 2# and #v = -e^-x#.

#int 2xe^-x dx = -2xe^-x - int -2e^-xdx#

#int 2xe^-x dx = -2xe^-x + int 2e^-x dx#

#int 2xe^-x dx = -2xe^-x - 2e^-x#

Therefore

#intx^2e^-xdx = -x^2e^-x - 2xe^-x - 2e^-x#

We repeat the same few steps with #xe^-x#. We let #u = x# and #dv = e^-x#. Therefore #du = 1# and #v = -e^-x#.

#intxe^-x dx = -xe^-x - int-e^-xdx #

#int xe^-x dx = -xe^-x + inte^-x dx#

#intxe^-x dx = -xe^-x - e^-x#

Now we have to put all this together in our original integral expression,.

#A = [-xe^-x - e^-x -(-x^2e^-x - 2xe^-x - 2e^-x)]_0^1#

#A = [x^2e^-x + xe^-x + e^-x]_0^1#

#A = (1)^2e^(-1) + 1e^(-1) + e^(-1) - e^0#

#A = 1/e + 1/e + 1/e - 1#

#A = 3/e - 1#

#A = (3 - e)/e ~~ 0.104#

This isn't all. We also must consider the region bounded by the curve from #[1, oo]#. This area expression is going to be #int_1^oo x^2e^-x - xe^-x#

Thus

#A_2 =lim_(t->oo) [-t^2e^-t - 2te^-t - 2e^-t - (-te^-t - e^-t)]_1^t#

#A_2 = lim_(t-> oo) [-t^2e^-t - te^-t - e^-t]_1^t#

#A_2 = 1/e + 1/e + 1/e#

#A_2 = 3/e ~~ 1.104#

Therefore our total bounded area is #1.104 + 0.104 = 1.208#

Hopefully this helps!