How to find the coefficient of any term in the power series expansion?

find the coefficient of #x^4# in the power series expansion (#x^2#-1)/(#x^2#+1)(#x^2#+2)

1 Answer
May 10, 2018

#(x^2-1)/((x^2+1)(x^2+2)) =-1/2+5/4x^2-13/8x^4+...#

Explanation:

Perform partial fraction decomposition:

#(x^2-1)/((x^2+1)(x^2+2)) =A/(x^2+1) + B/(x^2+2)#

#(x^2-1)/((x^2+1)(x^2+2)) =(A(x^2+2) +B(x^2+1))/((x^2+1)(x^2+2)) #

#x^2-1 = (A+B)x^2 +(2A+B)#

#{(A+B=1),(2A+B=-1):}#

#{(A=-2),(B=3):}#

#(x^2-1)/((x^2+1)(x^2+2)) = 3/(x^2+2)-2/(x^2+1)#

Consider now the sum of a geometric series:

#sum_(n=0)^oo q^n = 1/(1-q)# for #absq<1#

we have:

#3/(x^2+2) = 3/2 1/(1+x^2/2)#

Let #q= -x^2/2# so we can see that:

#3/(x^2+2) = 3/2 sum_(n=0)^oo (-x^2/2)^n#

#3/(x^2+2) = 3/2 sum_(n=0)^oo (-1)^n x^(2n)/2^n#

SImilarly:

#2/(x^2+1) = 2sum_(n=0)^oo (-1)^n x^(2n)#

Then:

#(x^2-1)/((x^2+1)(x^2+2)) = 3/2 sum_(n=0)^oo (-1)^n x^(2n)/2^n - 2sum_(n=0)^oo (-1)^n x^(2n)#

and grouping the terms of the same index:

#(x^2-1)/((x^2+1)(x^2+2)) = sum_(n=0)^oo (-1)^n (3/2^(n+1)-2)x^(2n)#

#(x^2-1)/((x^2+1)(x^2+2)) =-1/2+5/4x^2-13/8x^4+...#