How to find the limit for #lim x -> 0 ( 1/(xsqrtx) * int_0^sqrtx cos(pi/2*e^(t^2))dt)# with l'Hospital?

1 Answer
May 23, 2018

# - pi /6#

Explanation:

#lim_(x to 0) (int_0^sqrtx cos(pi/2*e^(t^2))dt)/(xsqrtx)#

This is #0/0# indeterminate so L'Hopital:

#= lim_(x to 0) (d/dx( int_0^sqrtx cos(pi/2*e^(t^2))dt))/(d/dx (x^(3/2) ))#

#= lim_(x to 0) ( cos(pi/2*e^((sqrtx)^2)) d/dx(sqrtx))/(3/2 x^(1/2) )#

#= lim_(x to 0) ( 1/2 cos(pi/2*e^(x)) )/(3/2 x ) = lim_(x to 0) ( cos(pi/2*e^(x)) )/(3 x )#

That is still #0/0 # indeterminate.

#= lim_(x to 0) ( d/dx cos(pi/2*e^(x)) )/(d/dx 3 x )#

#= lim_(x to 0) (- sin (pi/2*e^(x))* pi/2 e^x )/(3 )#

With:

  • #lim_(Q to 0) e^Q = 1#

#= (- sin (pi/2*1)* pi/2 (1) )/(3 ) = - pi /6#