How to solve?

Solve #tanx+tan2x+tan3x=0# without changing tan into sin and cos.

1 Answer
Jan 24, 2018

The Solution Set is given by,

#{kpi/3}uu{kpi+-arc tan(1/sqrt2)}, k in ZZ#.

Explanation:

Let, #tanx=u, tan2x=v#.

Then, #tan3x=tan(x+2x)=(tanx+tan2x)/(1-tanxtan2x), i.e., #

#tan3x=(u+v)/(1-uv)#.

#:. tanx+tan2x+tan3x=0,#

#rArr u+v+(u+v)/(1-uv)=0#,

#rArr (u+v){1+1/(1-uv)}=0#,

#rArr{(u+v)(2-uv)}/(1-uv)=0#,

#rArr (u+v)(2-uv)=0#,

#rArr v=-u, or, uv=2#.

#v=-u rArr tan2x=-tanx=tan(-x)#.

Recall that, #tantheta=tanalpha rArr theta=kpi+alpha, k in ZZ#.

#"Case 1 : "v=-u#

#:. tan2x=tan(-x)#

#rArr 2x=kpi+(-x), or, 3x=kpi, i.e., x=kpi/3, k in ZZ#.

#"Case 2 : "uv=2#.

#:. tanx*tan2x=2#,

Using #tan2x=(2tanx)/(1-tan^2x)#, we have, then

#(2tan^2x)/(1-tan^2x)=2, or, tan^2x=1-tan^2x, i.e., #

#tan^2x=1/2 rArr tanx=+-1/sqrt2#,

#rArr x=kpi+arc tan(+-1/sqrt2), k in ZZ#.

Altogether, the Solution Set is given by,

#{kpi/3}uu{kpi+-arc tan(1/sqrt2)}, k in ZZ#.