How to solve #(3^-2+4)/(5^0-9^-1)#?
#(3^-2+4)/(5^0-9^-1)#
2 Answers
May 9, 2018
Explanation:
we need to use exponential law here:
So from:
We get:
**multiply by 9 both in numerator and denumerator and we get:
May 9, 2018
Explanation:
#"using the "color(blue)"laws of exponents"#
#•color(white)(x)a^-mhArr1/a^m" and "a^0=1#
#rArr(3^-2+4)/(5^0-9^-1)#
#=(1/3^2+4)/(1-1/9^1)#
#=(1/9+36/9)/(9/9-1/9)#
#=(37/9)/(8/9)=37/cancel(9)xxcancel(9)/8=37/8#