How to solve #lim(root(n)(x)-1)/(root(m)(x)-1)# with #n,m in NN# and #n>=2#?

1 Answer
Dec 11, 2017

#m/n#

Explanation:

Choosing now #y^(nm) = x# and substituting

#(root(n)(x)-1)/(root(m)(x)-1)equiv (y^m-1)/(y^n-1) = (1+y+cdots+y^(m-1))/(1+y+cdots+y^(n-1))#

and finally

#lim_(x->1)(root(n)(x)-1)/(root(m)(x)-1)=lim_(y->1)(1+y+cdots+y^(m-1))/(1+y+cdots+y^(n-1)) = m/n#

NOTE

We were using the polynomial identity

#(x^n-1)/(x-1) = 1+x+x^2+ cdots+ x^(n-1)#