How to solve solve integral 1/(x+√(9-x^2)) with lower limit 0 and upper limit 3?

2 Answers
Apr 25, 2018

#I=pi/4#

Explanation:

We know that,

"If #f# is continous in #[0,a] ,then#

#color(red)(int_0^af(x)dx=int_0^af(a-x)dx...to(F)#"

Here,

#I=int_0^3 1/(x+sqrt(9-x^2)) dx#

Let,

#x=3sinu=>dx=3cosudu#

#andsinu=x/3=>u=sin^-1(x/3)#

#x=0=>u=0andx=3=>u=pi/2#

So,

#I=int_0^(pi/2) 1/(3sinu+sqrt(9-9sin^2u))xx3cosudu#

#=int_0^(pi/2) (3cosu)/(3sinu+3cosu)du#

#color(blue)(I=int_0^(pi/2)cosu/(sinu+cosu)du...to(A)#

#I=int_0^(pi/2)(cos(pi/2-u))/((sin(pi/2-u)+cos(pi/2-u)))du...tocolor(red)(Apply(F)#

#color(blue)(I=int_0^(pi/2)(sinu)/(cosu+sinu)du...to(B)#

Adding #(A)and(B)#

#I+I=int_0^(pi/2)[cosu/(sinu+cosu)+sinu/(cosu+sinu)]du#

#2I=int_0^(pi/2)[(cosu+sinu)/(sinu+cosu)]du#

#2I=int_0^(pi/2)1du#

#2I=[u]_0^(pi/2)#

#2I=pi/2-0=pi/2#

#I=pi/4#

Apr 25, 2018

# pi/4#.

Explanation:

#"Prerequisite :" int_0^a f(t)dt=int_0^af(a-t)dt............(ast)#.

Let, #I=int_0^3 1/(x+sqrt(9-x^2))dx#.

We subst. #x=3sint. :. dx=3costdt#.

Also, #x=0 rArr t=0; &, x=3 rArr t=pi/2#.

#:. I=int_0^(pi/2) 1/(3sint+3cost)*3costdt#.

#:. I=int_0^(pi/2) cost/(sint+cost)dt.................(1)#.

Applying #(ast)" on "I#, we get,

#I=int_0^(pi/2) cos(pi/2-t)/{sin(pi/2-t)+cos(pi/2-t)}dt, i.e., #

#I=int_0^(pi/2) sint/(cost+sint)dt.........................(2)#.

#"Adding "(1) & (2), 2I=int_0^(pi/2){(cost+sint)/(cost+sint)}dt#,

#=int_0^(pi/2)1dt#,

#=[t]_0^(pi/2)#.

#rArr 2I=pi/2#.

# rArr I=pi/4#, as desired!

Enjoy Maths!