We have
#(x-x_1)(x-x_2)(x-x_3) = x^3-(x_1+x_2+x_3)x^2+(x_1 x_2+x_2 x_3+x_1 x_3)x-x_1x_2x_3#
and also
#x_1/(p-q-r)=x_2/q=x_3/r=lambda rArr {((x_1+x_2+x_3)/p = lambda),
((x_1 x_2+x_2 x_3+x_1 x_3)/((p-q-r)q+qr+(p-q-r)r)=lambda),
((x_1x_2x_3)/((p-q-r)q r)=lambda):}#
and then
#{(-p=lambda p),(q=lambda((p-q-r)q+qr+(p-q-r)r)),(-r=lambda(p-q-r)q r):}#
Here we have #lambda = -1#
Solving now
#{(q=-((p-q-r)q+qr+(p-q-r)r)),(1=(p-q-r)q):}#
now calling #mu = p-q-r# and solving
#{(q = -(mu q + q r + mu r)),(1 = mu q):}#
for #mu, r# we obtain
#{(mu=1/q), (r=-(q (1 + q))/(1 + q^2)):}#
and consequently
#{(x_1 = -1/q), (x_2 = -q), (x_3=(q (1 + q))/(1 + q^2)):}#