I do find a polynomial such as #P(-3) = 0# #P(4) = 0# and #P'(-sqrt(3)) = 0# #P'(e) = 0# ?

1 Answer
Jul 22, 2016

#P(x) = x^4-1.89528x^3-8.55794x^2+8.19652x-30.5614#

Explanation:

Given four conditions, we will choose a four coefficient's polynomial.

#P(x) = x^4+ax^3+bx^2+c x+d#

Now, applying the conditions, with #e# the natural logarithms basis,

#{ (P(-3) = 81-a 27+b 9-c3=0), (P(4)=256+a64+b16+c4+d=0), (P'(-sqrt(3))=-4(sqrt(3))^3+3a(sqrt(3))^2-2bsqrt(3)+c=0), (P'(e)=4e^3+3e^2a+2eb+c=0) :}#

Solving for #a,b,c,d# we got

#{a = -1.89528, b = -8.55794, c = 8.19652, d = -30.5614}#