If #A = <1 ,6 ,-8 >#, #B = <-9 ,4 ,0 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 5, 2017

The angle is #=48.7#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈1,6,-8〉-〈-9,4,0〉=〈10,2,-8〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈1,6,-8〉.〈10,2,-8〉=10+12+64=86#

The modulus of #vecA#= #∥〈1,6,-8〉∥=sqrt(1+36+64)=sqrt101#

The modulus of #vecC#= #∥〈10,2,-8〉∥=sqrt(100+4+64)=sqrt168#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=86/(sqrt101*sqrt168)=0.66#

#theta=48.7#º