If #A = <1 ,6 ,9 >#, #B = <-9 ,4 ,-8 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 15, 2016

The angle is #=35.6#º

Explanation:

Let's start by calculating #vecC#

#vecC=vecA-vecB=〈1,6,9〉-〈-9,4,-8〉=〈10,2,17〉#

The angle #theta# is given by the dot product definition

#vecA.vecC=∥vecA∥*∥vecC∥*costheta#

#vecA.vecC=〈10,2,17〉.〈1,6,9〉=10+12+153=175#

The modulus of #vecA=∥vecA∥=∥〈1,6,9〉∥=sqrt(1+36+81)=sqrt118#

The modulus of #vecC=∥vecC∥=∥〈10,2,17〉∥=sqrt(100+4+289)=sqrt393#

Therefore, #costheta=175/(sqrt118*sqrt393)=0.81#

#theta=35.6#º