If #A = <2 ,-5 ,-8 >#, #B = <-9 ,4 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 15, 2016

The angle is #49.5#º

Explanation:

Let's calculate #vecC#

#vecC=vecA-vecB=〈2,-5,-8〉-〈-9,4,-5〉#

#=〈11,-9,-3〉#

The angle #theta# between #vecA# and #vecC# is calculated from the dot product definition

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

The dot product #vecA.vecC=〈2,-5,-8〉.〈11,-9,-3〉#

#=2*11+5*9+8*3=22+45+24=91#

The modulus of #∥vecA∥=∥〈2,-5,-8〉∥=sqrt(4+25+64)=sqrt93#

The modulus of #∥vecC∥=∥〈11,-9,-3〉∥=sqrt(121+81+9)=sqrt211#

Therefore, #costheta=91/(sqrt93*sqrt211)=0.65#

#theta=49.5#º