If #A= <-5 ,-1 ,-3 ># and #B= <-6 ,-4 ,-7 >#, what is #A*B -||A|| ||B||#?

1 Answer
Nov 27, 2017

The answer is #=4.46#

Explanation:

The vectors are

#vecA= <-5,-1,-3>#

#vecB = <-6,-4,-7>#

The modulus of #vecA# is #=||vecA||=||<-5,-1,-3>||=sqrt((-5)^2+(-1)^2+(-3)^2)=sqrt(25+1+9)=sqrt35#

The modulus of #vecB# is #=||vecB||=||<-6,-4,-7>||=sqrt((-6)^2+(-4)^2+(-7)^2)=sqrt(36+16+49)=sqrt101#

Therefore,

#||vecA|| *||vecB||=sqrt35*sqrt101=sqrt3535#

The dot product is

#vecA.vecB= <-5,-1,-3> .<-6,-4,-7>#

# =(-5xx-6)+(-1xx-4)+(-3xx-7)#

#=30+4+21=55 #

Therefore,

#vecA.vecB-||vecA|| xx||vecB||=55-sqrt3535= -4.46#