If #A = <-7 ,1 ,-3 >#, #B = <3 ,4 ,1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 6, 2017

The angle is #=23.1#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈-7,1,-3〉-〈3,4,1〉=〈-10,-3,-4〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈-7,1,-3〉.〈-10,-3,-4〉=70-3+12=79#

The modulus of #vecA#= #∥〈-7,1,-3〉∥=sqrt(49+1+9)=sqrt59#

The modulus of #vecC#= #∥〈-10,-3,-4〉∥=sqrt(100+9+16)=sqrt125#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=79/(sqrt59*sqrt125)=0.9199#

#theta=23.1#º